Wednesday, September 7, 2022

6m Antenna Upgrade Part 2 – High-Power Preamp System BY FKEMMERER

The next step in our 6m Antenna upgrade project is to build two high-power preamp housings using high-performance, Low-Noise Amplifiers (LNAs). I plan to use one of the housings with our existing 7-element Yagi on our house-bracketed tower and the other housing as a shared preamp system for the new 3-element stacks and the new 7-element Yagi on our 100 ft tower. The housings are designed to handle legal limit power (1500w) in all modes, including digital modes.

Preamp System Design

6m Preamp System Design

6m Preamp System Design

The diagram above shows the design of the 6m preamp systems that we are building. The main RF path is switched via a pair of high-power vacuum relays. The low-noise LNA that we choose includes an RF bypass feature so that the un-amplified receive path can be maintained when the LNA is turned off. I added a relay to the system to provide additional isolation and protection for the LNA when the system is in Tx mode. The protection relay also provides terminations for the LNA when the system is in Tx mode. This provides an extra degree of protection and ensures that the LNA is operational and stable as soon as the system switches to Rx mode.

System Components

6m Preamp Housing Component Details

6m Preamp Housing Component Details

All of the components in the preamp system are mounted in a 12″ x 10″ x 5″ NEMA housing from Cooper B-line (PN 12105-12CHC). I purchased two of these from a local electrical supply store. In addition to the relays and LNA, I used the following components to complete the 6m Preamp Housings:

Sections of 1/4″ aluminum bar stock are bolted to the mounting tabs on the enclosure to provide a means to anchor the enclosure to our towers via Saddle Clamps. Female N connector bulkheads are used to provide the RF connections to the antenna and Amplifier/Feedline sides of the preamp system. The relays and LNA are mounted to the plate that came with the enclosure. A piece of aluminum bar stock material and some aluminum tubing were used to make a stand-off mount for a screw connector terminal block for the control connections to the preamp system.

Main Feedline Path

M2 HPR-1 High Power Coaxial Relay

M2 Antenna Systems HPR-1 High Power Coaxial Relay

I choose the HPR-1 Vacumn relays from M2 Antenna Systems to implement the main Tx/Rx path in the preamp system. These relays handle the power levels required and provide an extra degree of protection should an accidental hot-switch event occur. They provide 32 dB of isolation at 50 MHz which is not quite enough to fully protect the LNA at legal limit power. These relays are 24 Vdc powered and are switched together.

LNA and Protection Relay

6m Antenna Project

Advanced Receiver Research RF Switched LNA

I choose a GaAsFET LNA from Advanced Receiver Research (PN SP50VDG) for the preamp system. This LNA provides 24 dB of gain, has a low noise factor of 0.55 dB, and has a relatively high dynamic range and immunity to overload. The LNA is 12 Vdc powered. I choose at RF switched version of this LNA as it includes an RF relay that bypasses the LNA circuitry when the unit is powered off. This will allow me to turn off the LNA remotely and use my antennas without the additional amplification provided by the LNA. This also allows SWR measurements to be made through the preamp system without having to force the preamp system into Tx mode.

M2 HPR-1 High Power Coaxial Relay

M2 HPR-1 High Power Coaxial Relay

I added a DPDT relay from Tohtsu (PN CX-800N) to provide additional isolation to protect the LNA during Tx. This relay provides an additional 50 dB of isolation and is 24 Vdc powered. The protection relay is used to switch a combination of a short circuit (on the LNA input) and a 50-ohm termination (on the LNA output) during Tx. The combination of the relays provides a total of over 80 dB of isolation during Tx. The isolation relay coupled with the terminations and the high overload capability of the LNA should ensure safe and trouble-free operation at legal limit power.

Power, Control, and Sequencing

microHAM Control Boxes And Hub

microHAM Control Boxes

I will use our microHam system to provide the switching and sequencing capabilities required to operate the preamp housings. The microHam system enables devices like LNAs to be placed in feedline paths where they can be shared among multiple antennas, amplifiers, and transceivers. The microHam system includes shared control boxes (ex. Relay 6 shown above) that provide relays that we will use to control the LNA powering and relays in our preamp housing. I will share more on this part of the project in the next article in this series. Our station includes bulk DC power supplies that provide both 28 Vdc and 13.8 Vdc power to drive the relays and power the LNA in the preamp housings.

Next Steps

We’ll continue to post more articles in this series as our project proceeds. Here are some links to other articles in our series about our 6m Antenna Upgrade Project:

The next step in this project will be to configure our microHam system to support the Preamp Housings and the remote antenna switching elements that are part of our project.

Fred, AB1OC

No comments:

Post a Comment